Send to:

Choose Destination
See comment in PubMed Commons below
J Invest Dermatol. 2008 Feb;128(2):361-9. Epub 2007 Jul 19.

Microarray analysis demonstrates a role for Slug in epidermal homeostasis.

Author information

  • 1Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA.


Slug (Snail2) is a member of the Snail family of zinc-finger transcription factors with regulatory functions in development, tissue morphogenesis, and tumor progression. Little is known about Slug in normal adult tissue; however, a role for Slug in the skin was suggested by our previous observations of Slug expression in normal murine keratinocytes and Slug induction at wound margins. To study the impact of Slug in the skin, we compared patterns of gene expression in epidermis from Slug-null and wild-type mice. A total of 139 genes had significantly increased, and 109 genes had significantly decreased expression in Slug knockout epidermis. Altered expression of selected genes in Slug knockout epidermis was validated by real-time PCR and immunohistochemistry. Previously reported Slug targets were identified, in addition to novel genes, including cytokeratins, adhesion molecules, and extracellular matrix components. Functional classification of altered gene expression was consistent with a role for Slug in keratinocyte development and differentiation, proliferation, apoptosis, adhesion, motility, as well as angiogenesis and response to environmental stimuli. These results highlight the utility of genetic models to study the in vivo impact of regulatory factors in unperturbed skin and suggest that Slug has significant activities in the adult epidermis.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk