Format

Send to:

Choose Destination
See comment in PubMed Commons below
Anal Chem. 2007 Aug 1;79(15):5574-81. Epub 2007 Jul 6.

CdS nanocrystal-based electrochemiluminescence biosensor for the detection of low-density lipoprotein by increasing sensitivity with gold nanoparticle amplification.

Author information

  • 1Key Laboratory of Analytical Chemistry for Life Science (Ministry of Education of China), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China.

Abstract

Mercaptoacetic acid (RSH)-capped CdS nanocrystals (NCs) was demonstrated to be electrochemically reduced during potential scan and react with the coreactant S2O8(2-) to generate strong electrochemiluminescence (ECL) in aqueous solution. Based on the ECL of CdS NCs, a novel label-free ECL biosensor for the detection of low-density lipoprotein (LDL) has been developed by using self-assembly and gold nanoparticle amplification techniques. The biosensor was prepared as follows: The gold nanoparticles were first assembled onto a cysteamine monolayer on the gold electrode surface. This gold nanoparticle-covered electrode was next treated with cysteine and then reacted with CdS NCs to afford a CdS NC-electrode. Finally, apoB-100 (ligand of LDL receptor) was covalently conjugated to the CdS NC-electrode. The modification procedure was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, and atomic force microscopy, respectively. The resulting modified electrode was tested as ECL biosensor for LDL detection. The LDL concentration was measured through the decrease in ECL intensity resulting from the specific binding of LDL to apoB-100. The ECL peak intensity of the biosensor decreased linearly with LDL concentration in the range of 0.025-16 ng mL-1 with a detection limit of 0.006 ng mL-1. The CdS NCs not only showed high ECL intensity and good biocompatibility but also could provide more binding sites for apoB-100 loading. In addition, the gold nanoparticle amplification for protein ECL analysis was applied to the improvement of the detection sensitivity. Thus, the biosensor exhibited high sensitivity, good reproducibility, rapid response, and long-term stability.

PMID:
17614363
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk