Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Environ Sci Technol. 2007 Jun 1;41(11):4103-10.

Kinetic modeling of the oxidation of p-hydroxybenzoic acid by Fenton's reagent: implications of the role of quinones in the redox cycling of iron.

Author information

  • 1School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.


As Fenton (and Fenton-like) chemistry is increasingly implicated in a variety of areas and applications, an understanding of the mechanism and rates governing the system becomes relevant for a growing number of disciplines and purposes. In this work a kinetic model capable of describing species concentrations measured experimentally during the Fenton-mediated oxidation of p-hydroxybenzoic acid (pHBA) is presented and discussed. Experiments were conducted in the dark at low pH using reagent and substrate concentrations ranging from 100 microM to 2 mM. Analysis of the experimental and modeling results reveals that redox reactions between Fe and quinone or quinone-like compounds are essential for the model to qualitatively predict species concentration profiles observed in the laboratory. The quinone and quinone-like compounds generated as byproducts during the oxidation of pHBA act as reducing agents toward Fe(III), thereby assisting the redox cycling of Fe and increasing degradation of the target substrate. The experimental and kinetic modeling results presented highlight the role quinones play in the catalytic redox cycling of iron and the overall effect on the oxidative treatment performance of the system.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk