Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):12211-6. Epub 2007 Jul 3.

Structural modules for receptor dimerization in the S-locus receptor kinase extracellular domain.

Author information

  • 1Department of Plant Biology, Cornell Theory Center, Cornell University, Ithaca, NY 14853, USA.


The highly polymorphic S-locus receptor kinase (SRK) is the stigma determinant of specificity in the self-incompatibility response of the Brassicaceae. SRK spans the plasma membrane of stigma epidermal cells, and it is activated in an allele-specific manner on binding of its extracellular region (eSRK) to its cognate pollen coat-localized S-locus cysteine-rich (SCR) ligand. SRK, like several other receptor kinases, forms dimers in the absence of ligand. To identify domains in SRK that mediate ligand-independent dimerization, we assayed eSRK for self-interaction in yeast. We show that SRK dimerization is mediated by two regions in eSRK, primarily by a C-terminal region inferred by homology modeling/fold recognition techniques to assume a PAN_APPLE-like structure, and secondarily by a region containing a signature sequence of the S-domain gene family, which might assume an EGF-like structure. We also show that eSRK exhibits a marked preference for homodimerization over heterodimerization with other eSRK variants and that this preference is mediated by a small, highly variable region within the PAN_APPLE domain. Thus, the extensive polymorphism exhibited by the eSRK not only determines differential affinity toward the SCR ligand, as has been assumed thus far, but also underlies a previously unrecognized allelic specificity in SRK dimerization. We propose that preference for SRK homodimerization explains the codominance exhibited by a majority of SRKs in the typically heterozygous stigmas of self-incompatible plants, whereas an increased propensity for heterodimerization combined with reduced affinity of heterodimers for cognate SCRs might underlie the dominant-recessive or mutual weakening relationships exhibited by some SRK allelic pairs.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk