Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Nutr Food Res. 2007 Jul;51(7):832-44.

Disruption of the developing female reproductive system by phytoestrogens: genistein as an example.

Author information

  • 1Developmental Endocrinology and Endocrine Disruptor Section, Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC, USA. jeffers1@niehs.nih.gov

Abstract

Studies in our laboratory have shown that exposure to genistein causes deleterious effects on the developing female reproductive system. Mice treated neonatally on days 1-5 by subcutaneous injection of genistein (0.5-50 mg/kg) exhibited altered ovarian differentiation leading to multioocyte follicles (MOFs) at 2 months of age. Ovarian function and estrous cyclicity were also disrupted by neonatal exposure to genistein with increasing severity observed over time. Reduced fertility was observed in mice treated with genistein (0.5, 5, or 25 mg/kg) and infertility was observed at 50 mg/kg. Mammary gland and behavioral endpoints were also affected by neonatal genistein treatment. Further, transgenerational effects were observed; female offspring obtained from breeding genistein treated females (25 mg/kg) to control males had increased MOFs. Thus, neonatal treatment with genistein at environmentally relevant doses caused adverse consequences on female development which is manifested in adulthood. Whether adverse effects occur in human infants exposed to soy-based products such as soy infant formulas is unknown but the neonatal murine model may help address some of the current uncertainties since we have shown that many effects obtained from feeding genistin, the glycosolated form of genistein found in soy formula, are similar to those obtained from injecting genistein.

PMID:
17604387
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk