Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Ecology. 2007 Jun;88(6):1525-35.

Predator and prey space use: dragonflies and tadpoles in an interactive game.

Author information

  • 1Department of Environmental Science and Policy, One Shields Avenue, University of California, Davis, California 95616, USA. Jihammond@ucdavis.edu

Abstract

Predator and prey spatial distributions have important population and community level consequences. However, little is known either theoretically or empirically about behavioral mechanisms that underlie the spatial patterns that emerge when predators and prey freely interact. We examined the joint space use and behavioral rules governing movement of freely interacting groups of odonate (dragonfly) predators and two size classes of anuran (tadpole) prey in arenas containing two patches with different levels of the prey's resource. Predator and prey movement and space use was quantified both when they were apart and together. When apart from predators, large tadpoles strongly preferred the high resource patch. When apart from prey, dragonflies weakly preferred the high resource patch. When together, large prey shifted to a uniform distribution, while predators strongly preferred the high resource patch. These patterns qualitatively fit the predictions of several three trophic level, ideal free distribution models. In contrast, the space use of small prey and predators did not deviate from uniform. Three measures of joint space use (spatial correlations, overlap, and co-occurrence) concurred in suggesting that prey avoidance of predators was more important than predator attraction to prey in determining overall spatial patterns. To gain additional insight into behavioral mechanisms, we used a model selection approach to identify behavioral movement rules that can potentially explain the observed, emergent patterns of space use. Prey were more likely to leave patches with more predators and more conspecific competitors; resources had relatively weak effects on prey movements. In contrast, predators were more likely to leave patches with low resources (that they do not consume) and more competing predators; prey had relatively little effect on predator movements. These results highlight the importance of investigating freely interacting predators and prey, the potential for simple game theory models to predict joint spatial distributions, and the utility of using model choice methods to identify potential key factors that govern movement.

PMID:
17601144
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk