Binding in transition metal complexes: Reduced multireference coupled-cluster study of the MCH2+ (M=Sc to Cu) compounds

J Chem Phys. 2007 Jun 21;126(23):234303. doi: 10.1063/1.2741265.

Abstract

The recently developed reduced multireference coupled-cluster method with singles and doubles (RMR CCSD), which is perturbatively corrected for triples [RMR CCSD(T)], is employed to compute binding energies of nine transition metal ions with CH2. Unlike analogous compounds involving main-group elements, the MCH2+ (M=Sc to Cu) transition metal complexes often exhibit a non-negligible multireference character. The authors thus employ the RMR CCSD(T) method, which represents an extension of the standard single-reference (SR) CCSD(T) method and can account for multireference effects, while employing only small reference spaces. In this way the role of quasidegeneracy effects on the binding energies of these complexes can be assessed at a higher SD(T) level than is possible with the widely used ab initio methods, namely, with the standard SR CCSD(T) approach, and provide a new benchmark for these quantities. The difference between the RMR and the standard CCSD(T) methods becomes particularly evident when considering nonequilibrium geometries.