Send to:

Choose Destination
See comment in PubMed Commons below
J Neurochem. 2007 Jul;102(2):522-38.

Curcumin suppresses growth and chemoresistance of human glioblastoma cells via AP-1 and NFkappaB transcription factors.

Author information

  • 1Department of Neurosurgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912, USA.


Malignant gliomas are a debilitating class of brain tumors that are resistant to radiation and chemotherapeutic drugs, contributing to the poor prognosis associated with these tumors. Over-expression of transcription factors such as NFkappaB and AP-1 contribute to the enhanced glioma survival, radioresistance, and chemoresistance. Curcumin, which may inhibit these pathways, was therefore investigated for a potential therapeutic role in glioma. The effect of curcumin on glioma survival was investigated in human (T98G, U87MG, and T67) and rat (C6) glioma cell lines. The ability of curcumin to overcome glioma cell radioresistance and chemoresistance was also explored. Curcumin reduced cell survival in a p53- and caspase-independent manner, an effect correlated with the inhibition of AP-1 and NFkappaB signaling pathways via prevention of constitutive JNK and Akt activation. Curcumin-sensitized glioma cells to several clinically utilized chemotherapeutic agents (cisplatin, etoposide, camptothecin, and doxorubicin) and radiation, effects correlated with reduced expression of bcl-2 and IAP family members as well as DNA repair enzymes (MGMT, DNA-PK, Ku70, Ku80, and ERCC-1). These findings support a role for curcumin as an adjunct to traditional chemotherapy and radiation in the treatment of brain cancer.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Write to the Help Desk