Send to:

Choose Destination
See comment in PubMed Commons below
Org Biomol Chem. 2007 Jul 7;5(13):2046-54. Epub 2007 May 25.

Photovoltaic performance of dye-sensitized solar cells based on donor-acceptor pi-conjugated benzofuro[2,3-c]oxazolo[4,5-a]carbazole-type fluorescent dyes with a carboxyl group at different positions of the chromophore skeleton.

Author information

  • 1Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-hiroshima 739-8527, Japan.


Donor-acceptor pi-conjugated benzofuro[2,3-c]oxazolo[4,5-a]carbazole-type fluorescent dyes 3a, 3b, 8a, and 8b with a carboxyl group at different positions of the chromophore skeleton have been designed and synthesized. The absorption and fluorescence spectra and cyclic voltammograms of the fluorescent dyes agree very well, showing that the position of the carboxyl group has a negligible influence on the photophysical and electrochemical properties of these dyes. When these dyes are used in dye-sensitized solar cells, however, their photovolatic performances are considerably different. The short-circuit photocurrents and energy conversion efficiencies under a simulated solar light increase in the order: 3a (2.12 mA cm(-2), 1.00%) approximately 3b (2.10 mA cm(-2), 1.06%) > 8b (1.50 mA cm(-2), 0.67%) > 8a (0.84 mA cm(-2), 0.34%). Based on semi-empirical molecular orbital calculations (AM1 and INDO/S) together with spectral analyses and their photovolatic performance, the relationships between the observed photovolatic properties and the chemical structures of the benzofuro[2,3-c]oxazolo[4,5-a]carbazole-type fluorescent dyes are discussed. It is found that strong interaction between a TiO(2) surface and the electron accepting moiety of the dye leads to a high photovoltaic performance.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry
    Loading ...
    Write to the Help Desk