Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2007 Sep 7;282(36):26418-30. Epub 2007 Jun 19.

Potential role for heparan sulfate proteoglycans in regulation of transforming growth factor-beta (TGF-beta) by modulating assembly of latent TGF-beta-binding protein-1.

Author information

  • 1Department of Oral Biology, School of Dentistry, University of Missouri at Kansas City, Kansas City, Missouri 64108, USA.


Latent transforming growth factor-beta-binding proteins (LTBPs) are extracellular matrix (ECM) glycoproteins that play a major role in storage of latent TGF-beta in the ECM and regulate its availability. We have previously identified fibronectin as a key molecule for incorporation of LTBP1 and TGF-beta into the ECM of osteoblasts and fibroblasts. Here we provide evidence that heparan sulfate proteoglycans may mediate binding between LTBP1 and fibronectin. We have localized critical domains in the N terminus of LTBP1 that are required for co-localization with fibronectin in osteoblast cultures and have identified heparin binding sites in the N terminus of LTBP1 between residues 345 and 487. Solid-phase binding assays suggest that LTBP1 does not bind directly to fibronectin but that the binding is indirect. Heparin coupled to bovine serum albumin (heparin-BSA) was able to mediate binding between fibronectin and LTBP1. Treatment of primary osteoblast cultures with heparin or heparin-BSA but not with chondroitin sulfate impaired LTBP1 deposition onto fibronectin without inhibiting expression of LTBP1. Inhibition of LTBP1 incorporation was accompanied by reduced incorporation of latent TGF-beta into the ECM, with increased amounts of soluble latent TGF-beta. Inhibition of attachment of glycosaminoglycans to the core proteins of proteoglycans by beta-d-xylosides also reduced incorporation of LTBP1 into the ECM. These studies suggest that heparan sulfate proteoglycans may play a critical role in regulating TGF-beta availability by controlling the deposition of LTBP1 into the ECM in association with fibronectin.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk