Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Adv Exp Med Biol. 2007;595:407-23.

Nephroprotective and hepatoprotective effects of curcuminoids.

Author information

  • Laboratory of Food and Biodynamics, Nagoya University Graduate School of Bioagricultural Sciences, Japan. osawat@agr.nagoya-u.ac.jp

Abstract

Curcumin (U1) has a wide spectrum of therapeutic effects such as antitumor and anti-inflammatory effects, including antibacterial, antiviral, antifungal, and antispasmodic activities. By comparison of the structure-activity relationship, tetrahydrocurcumin (THU1), one of the major metabolites, showed the highest antioxidative activity in both in vitro and in vivo systems. U1 has been reported to have the nephroprotective effect to improve creatinine and urea clearance and also protected the chronic renal allograft nephropathy. These beneficial effects have been explained by the protection of oxidative stress and the induction of antioxidative enzymes. The protective effect of THU1 against ferric nitrilotriacetate (Fe-NTA)-induced oxidative renal damage using male ddY mice was greater than that of U1, by monitoring not only radical scavenging activity measured by ESR, and TBARS, 4-HNE-modified protein and 8-OHdG formation but also induction of anioxidative enzymes and detoxification enzymes. THU1 was also expected to improve redox regulation through glutathione and suppress the oxidative stress in diabetic nephropathy and neuropathy. Earlier studies reported that U1 reduced the iron-induced hepatic damage, aflatoxin- and benzo[a]pyrene- induced mutagenicity and hepatocarcinogenecity and also the formation of the DNA adduct by inhibiting cytochrome P450 in the liver. The hepatoprotective role of U1 has been examined using carbone terachloride-induced liver damage in rats and alcoholic liver disease model rats, but not examined using THU1. Our recent data suggests that THU1 is a more promising hepatprotective agent because of its strong induction activity of antioxidant and phase 2-metabolizing enzymes in liver compared to kidney, although more detaied examinations are required.

PMID:
17569222
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk