Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Neurobiol Dis. 2007 Jul;27(1):102-7. Epub 2007 May 6.

Pathological activity of familial Alzheimer's disease-associated mutant presenilin can be executed by six different gamma-secretase complexes.

Author information

  • 1Munich Center for Integrated Protein Science and Adolf-Butenandt-Institute, Department of Biochemistry, Laboratory for Alzheimer's and Parkinson's Disease Research, Ludwig-Maximilians-University, Schillerstr 44, Munich, Germany.

Abstract

gamma-Secretase is a protease complex, which catalyzes the final of two subsequent cleavages of the beta-amyloid precursor protein (APP) to release the amyloid-beta peptide (Abeta) implicated in Alzheimer's disease (AD) pathogenesis. In human cells, six gamma-secretase complexes exist, which are composed of either presenilin (PS) 1 or 2, the catalytic subunit, nicastrin, PEN-2, and either APH-1a (as S or L splice variants) or its homolog APH-1b. It is not known whether and how different APH-1 species contribute to the pathogenic activity of gamma-secretase complexes with familial AD (FAD)-associated mutant PS. Here we show that all known gamma-secretase complexes are active in APP processing and that all combinations of APH-1 variants with either FAD mutant PS1 or PS2 support pathogenic Abeta(42) production. Since our data suggest that pathogenic gamma-secretase activity cannot be attributed to a discrete gamma-secretase complex, we propose that all gamma-secretase complexes have to be explored and evaluated for their potential as AD drug target.

PMID:
17560791
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk