Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biomaterials. 2007 Sep;28(26):3867-75. Epub 2007 May 10.

Transition behavior in fatigue of human dentin: structure and anisotropy.

Author information

  • 1Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA. darola@umbc.edu

Abstract

The influence of tubule orientation on the transition from fatigue to fatigue crack growth in human dentin was examined. Compact tension (CT) and rectangular beam specimens were prepared from the coronal dentin of molars with three unique tubule orientations (i.e., 0 degrees , 45 degrees and 90 degrees). The CT specimens (N=25) were used to characterize fatigue crack initiation and steady-state cyclic extension, whereas the rectangular beams (N=132) were subjected to 4-pt flexure and used in quantifying the stress-life fatigue response. The transition behavior was analyzed using both the Kitagawa-Takahashi and El Haddad approaches. Results showed that both the fatigue crack growth and stress-life responses were dependent on the tubule orientation. The average Paris Law exponent for crack growth perpendicular (90 degrees) to the tubules (m=13.3+/-1.1) was significantly greater (p<0.05) than that for crack growth oblique (45 degrees) to the tubules (m=11.5+/-1.87). Similarly, the fatigue strength of dentin with 90 degrees tubule orientation was significantly lower (p<0.05) than that for the other two orientations, regardless of the range of cyclic stress. The apparent endurance strengths of specimens with 0 degrees (44MPa) and 45 degrees (53MPa) orientations were nearly twice that of the 90 degrees (24MPa) orientation. Based on these results, human dentin exhibits the largest degree of anisotropy within the stress-life regime and the transition from fatigue to fatigue crack growth occurs under the lowest cyclic stress range when the tubules are aligned with the cyclic normal stress (90 degrees orientation).

PMID:
17553559
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk