Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Am J Physiol Heart Circ Physiol. 2007 Sep;293(3):H1590-5. Epub 2007 Jun 1.

Factors released from embryonic stem cells inhibit apoptosis of H9c2 cells.

Author information

  • 1Department of Medicine, Division of Cardiology, Cardiovascular Research Institute, University of Vermont, College of Medicine, Colchester, Vermont, USA.

Abstract

Our recent study (Singla DK, Hacker TA, Ma L, Douglas PS, Sullivan R, Lyons GE, Kamp TJ, J Mol Cell Cardiol 40: 195-200, 2006) suggests that transplanted embryonic stem (ES) cells subsequent to myocardial infarction differentiate into the major cell types in the heart and improve cardiac function. However, the extent of regeneration is relatively meager compared with the observed functional improvement. The mechanisms underlying their improved function are completely unknown. In this report, we provide evidence using a cell culture model system for novel mechanisms that involve the release of cytoprotective, anti-apoptotic factor(s) from ES cells and inhibit H(2)O(2)-induced apoptosis in the rat cardiomyocyte-derived cell line H9c2. Conditioned medium (CM) from growing mouse ES cells treated with and without H(2)O(2) was generated. Apoptosis was induced after exposure to H(2)O(2) in H9c2 cells for 2 h followed by replacement with fresh cell culture or ES cell-CM. After 24 h, H9c2 cells treated with both ES cell-CMs demonstrated significantly decreased apoptosis, as determined by terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling staining, apoptotic ELISA, caspase-3 activity, and DNA ladder. Next, using Luminex technology, we examined the presence of antiapoptotic proteins cystatin c, osteopontin, and clusterin and anti-fibrotic, tissue inhibitor of metalloproteinase-1 (TIMP-1) in both ES cell-CMs. The levels of released factors were 2- to 170-fold higher than those in H9c2 cell-CM. Antiapoptotic effects of ES cell-CM were significantly inhibited with TIMP-1 antibody, suggesting that TIMP-1 is an important factor to inhibit apoptosis. Furthermore, we used CM from an TIMP-1-overexpressing cell line and demonstrated that H(2)O(2)-induced apoptosis in the H9c2 cells was significantly inhibited. These observations demonstrate that factors released from ES cells contain antiapoptotic factors and that the effects are mediated by TIMP-1. Moreover, these findings suggest that released factors might be useful for therapeutic applications in ischemic heart disease as well as for many other diseases.

Comment in

PMID:
17545477
[PubMed - indexed for MEDLINE]
PMCID:
PMC2441777
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk