Send to:

Choose Destination
See comment in PubMed Commons below
J Pharmacol Sci. 2007 Jun;104(2):109-15. Epub 2007 May 31.

Current topics in the regulatory mechanism underlying the Ca2+ sensitization of the contractile apparatus in vascular smooth muscle.

Author information

  • 1Division of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.


The Ca2+ signal is the primary determinant of the contraction of the vascular smooth muscle. However, the alteration of the Ca2+ sensitivity of the contractile apparatus also plays an essential role. The regulation of the myosin light chain phosphatase (MLCP) activity is considered to be the most important mechanism underlying the regulation of Ca2+ sensitivity. The investigations during the last 15 years have identified many proteins that participate in the regulation of the MLCP activity. Recently, the Ca2+ signal has also been shown to cross-talk with the mechanisms regulating the Ca2+ sensitivity. Consequently, Rho kinase, protein kinase C, CPI-17, and MYPT1 have all been suggested to play a physiologically important role in the regulation of the MLCP activity. We are now close to elucidating the major rules regulating the MLCP activity and the Ca2+ sensitivity during vascular contractions. This article will give an overview of the current understanding of the biochemical basis for the regulation of the MLCP activity, while also discussing their functional roles from a physiological point of view. I hope this article will help to develop new pharmacological strategies for the prevention and treatment of the pathological vasoconstriction often seen in vascular diseases.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for J-STAGE, Japan Science and Technology Information Aggregator, Electronic
    Loading ...
    Write to the Help Desk