Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2007 Jun 5;104(23):9685-90. Epub 2007 May 23.

Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells.

Author information

  • 1Department of Pathology, Center for Cardiovascular Biology, University of Washington School of Medicine, Seattle, WA 98109, USA.

Abstract

Understanding pathways controlling cardiac development may offer insights that are useful for stem cell-based cardiac repair. Developmental studies indicate that the Wnt/beta-catenin pathway negatively regulates cardiac differentiation, whereas studies with pluripotent embryonal carcinoma cells suggest that this pathway promotes cardiogenesis. This apparent contradiction led us to hypothesize that Wnt/beta-catenin signaling acts biphasically, either promoting or inhibiting cardiogenesis depending on timing. We used inducible promoters to activate or repress Wnt/beta-catenin signaling in zebrafish embryos at different times of development. We found that Wnt/beta-catenin signaling before gastrulation promotes cardiac differentiation, whereas signaling during gastrulation inhibits heart formation. Early treatment of differentiating mouse embryonic stem (ES) cells with Wnt-3A stimulates mesoderm induction, activates a feedback loop that subsequently represses the Wnt pathway, and increases cardiac differentiation. Conversely, late activation of beta-catenin signaling reduces cardiac differentiation in ES cells. Finally, constitutive overexpression of the beta-catenin-independent ligand Wnt-11 increases cardiogenesis in differentiating mouse ES cells. Thus, Wnt/beta-catenin signaling promotes cardiac differentiation at early developmental stages and inhibits it later. Control of this pathway may promote derivation of cardiomyocytes for basic research and cell therapy applications.

Comment in

  • Early cardiac development: a Wnt beat away. [Proc Natl Acad Sci U S A. 2007]
PMID:
17522258
[PubMed - indexed for MEDLINE]
PMCID:
PMC1876428
Free PMC Article

Images from this publication.See all images (5)Free text

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk