Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Hum Evol. 2007 Jul;53(1):41-60. Epub 2007 May 23.

Variation and diversity in Homo erectus: a 3D geometric morphometric analysis of the temporal bone.

Author information

  • 1Institute of Human Origins, School of Human Evolution and Social Change, Arizona State University, Box 872402, Tempe, AZ 85287-2402, USA. claire.terhune@asu.edu

Abstract

Although the level of taxonomic diversity within the fossil hominin species Homo erectus (sensu lato) is continually debated, there have been relatively few studies aiming to quantify the morphology of this species. Instead, most researchers have relied on qualitative descriptions or the evaluation of nonmetric characters, which in many cases display continuous variation. Also, only a few studies have used quantitative data to formally test hypotheses regarding the taxonomic composition of the "erectus" hypodigm. Despite these previous analyses, however, and perhaps in part due to these varied approaches for assessing variation within specimens typically referred to H. erectus (sensu lato) and the general lack of rigorous statistical testing of how variation within this taxon is partitioned, there is currently little consensus regarding whether this group is a single species, or whether it should instead be split into separate temporal or geographically delimited taxa. In order to evaluate possible explanations for variation within H. erectus, we tested the general hypothesis that variation within the temporal bone morphology of H. erectus is consistent with that of a single species, using great apes and humans as comparative taxa. Eighteen three-dimensional (3D) landmarks of the temporal bone were digitized on a total of 520 extant and fossil hominid crania. Landmarks were registered by Generalized Procrustes Analysis, and Procrustes distances were calculated for comparisons of individuals within and between the extant taxa. Distances between fossil specimens and between a priori groupings of fossils were then compared to the distances calculated within the extant taxa to assess the variation within the H. erectus sample relative to that of known species, subspecies, and populations. Results of these analyses indicate that shape variation within the entire H. erectus sample is generally higher than extant hominid intraspecific variation, and putative H. ergaster specimens are significantly different from other specimens in H. erectus (sensu lato). However, shape distances within geographical groups of H. erectus are also high, and OH 9 and Dmanisi 2280 are morphologically distinct from the Koobi Fora specimens that are sometimes classified as H. ergaster. These findings suggest that, although H. erectus may be composed of multiple species, the differentiation is complex, and specimens cannot easily be grouped geographically or chronologically. Consequently, more complicated scenarios seeking to explain the observed variation within H. erectus must be considered.

PMID:
17512034
[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk