Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Antioxid Redox Signal. 2007 Jul;9(7):1001-8.

Mitochondrial and nuclear p53 localization in cardiomyocytes: redox modulation by doxorubicin (Adriamycin)?

Author information

  • 1Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.

Abstract

Reactive oxygen (ROS) and nitrogen species (RNS) generation have been proposed to be an important mechanism of doxorubicin (Adriamycin; ADR)-induced cardiotoxicity and cardiomyocyte apoptosis, processes that may be mediated by p53 protein. We note that ADR treatment resulted in increased levels of p53 protein in cardiomyocyte mitochondria and nuclei. Modulation of the cardiomyocyte redox state in genetically engineered mice by modulation of enzymes involved in metabolism of ROS/RNS, manganese superoxide dismutase (MnSOD), or inducible nitric oxide synthase (iNOS), or a combination of these, regulated levels of mitochondrial/nuclear p53 in cardiomyocytes after ADR administration. These observations led to the hypothesis that mitochondrial/nuclear p53 localization and function in the cardiomyocyte response to ADR may be regulated through redox-dependent mechanism(s).

PMID:
17508921
[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Mary Ann Liebert, Inc.
    Loading ...
    Write to the Help Desk