Triplet reactivity and regio-/stereoselectivity in the macrocyclization of diastereomeric ketoprofen-quencher conjugates via remote hydrogen abstractions

J Am Chem Soc. 2007 Jun 13;129(23):7407-20. doi: 10.1021/ja0712827. Epub 2007 May 18.

Abstract

Intramolecular excited triplet state interactions in diastereomeric compounds composed of a benzophenone chromophore (ketoprofen) and various hydrogen donor moieties (tetrahydrofuran, isopropylbenzene) have been investigated by laser flash photolysis. The rate constants for hydrogen abstraction by excited triplet benzophenone are in the order of 10(4)-10(5) s(-1), with the highest reactivity for the tetrahydrofuran residue. A remarkable diastereodifferentiation, expressed in the triplet lifetimes of the carbonyl chromophore (e.g., 1.6 versus 2.7 micros), has been found for these compounds. With an alkylaromatic moiety as donor, related effects have been observed, albeit strongly dependent on the length of the spacer. The reactivity trend for the initial hydrogen transfer step is paralleled by the quantum yields of the overall photoreaction. The biradicals, formed via remote hydrogen abstraction, undergo intramolecular recombination to macrocyclic ring systems. The new photoproducts have been isolated and characterized by NMR spectroscopy. The stereochemistry of the macrocycles, which contain up to four asymmetric carbons, has been unambiguously assigned on the basis of single-crystal structures and/or NOE effects. Interestingly, a highly regio- and stereoselective macrocyclization has been found for the ketoprofen-tetrahydrofuran conjugates, where hydrogen abstraction from the less substituted carbon is exclusive; cisoid ring junction is always preferred over the transoid junction. The photoreaction is less regioselective for compounds with an isopropylbenzene residue. The reactivity and selectivity trends have been rationalized by DFT (B3LYP/6-31G*) calculations.