SERS at structured palladium and platinum surfaces

J Am Chem Soc. 2007 Jun 13;129(23):7399-406. doi: 10.1021/ja071269m. Epub 2007 May 17.

Abstract

Palladium and platinum are important catalytic metals, and it would be highly advantageous to be able to use surface enhanced Raman spectroscopy (SERS) to study reactive species and intermediates on their surfaces. In this paper we describe the use of templated electrodeposition through colloidal templates to produce thin (<1 microm) films of palladium and platinum containing close packed hexagonal arrays of uniform sphere segment voids. We show that, even though these films are not rough, when the appropriate film thickness and sphere diameter are employed these surfaces give stable, reproducible surface enhancements for Raman scattering from molecules adsorbed at the metal surface. We report SERS spectra for benzenethiol adsorbed on the structured palladium and platinum surfaces of different thicknesses and void diameters and show that, for 633 nm radiation, enhancements of 1800 and 550 can be obtained for palladium and platinum, respectively.