[Functional imaging for brain tumors (perfusion, DTI and MR spectroscopy)]

Radiologe. 2007 Jun;47(6):513-9. doi: 10.1007/s00117-007-1518-4.
[Article in German]

Abstract

This contribution considers the possibilities involved with using functional methods in magnetic resonance imaging (MRI) diagnostics for brain tumors. Of the functional methods available, we discuss perfusion MRI (PWI), diffusion MRI (DWI and DTI) and MR spectroscopy (H-MRS). In cases of brain tumor, PWI aids in grading and better differentiation in diagnostics as well as for pre-therapeutic planning. In addition, the course of treatment, both after chemo- as well as radiotherapy in combination with surgical treatment, can be optimized. PWI allows better estimates of biological activity and aggressiveness in low grade brain tumors, and in the case of WHO grade II astrocytoma showing anaplasically transformed tumor areas, allows more rapid visu-alization and a better prediction of the course of the disease than conventional MRI diagnostics. Diffusion MRI, due to the directional dependence of the diffusion, can illustrate the course and direction of the nerve fibers, as well as reconstructing the nerve tracts in the cerebrum, pons and cerebellum 3-dimensionally. Diffusion imaging can be used for describing brain tumors, for evaluating contralateral involvement and the course of the nerve fibers near the tumor. Due to its operator dependence, DTI based fiber tracking for defining risk structures is controversial. DWI can also not differentiate accurately between cystic and necrotic brain tumors, or between metastases and brain abscesses. H-MRS provides information on cell membrane metabolism, neuronal integrity and the function of neuronal structures, energy metabolism and the formation of tumors and brain tissue necroses. Diagnostic problems such as the differentiation between neoplastic and non-neoplastic lesions, grading cerebral glioma and distinguishing between primary brain tumors and metastases can be resolved. An additional contribution will discuss the control of the course of glial tumors after radiotherapy.

Publication types

  • English Abstract
  • Review

MeSH terms

  • Biomarkers, Tumor / analysis*
  • Brain Neoplasms / diagnosis*
  • Brain Neoplasms / metabolism*
  • Diffusion Magnetic Resonance Imaging / methods*
  • Humans
  • Magnetic Resonance Spectroscopy / methods*

Substances

  • Biomarkers, Tumor