Display Settings:

Format

Send to:

Choose Destination
J Biol Chem. 2007 Jul 13;282(28):20534-43. Epub 2007 May 14.

Hypoxia-inducible factor 1alpha is regulated by the mammalian target of rapamycin (mTOR) via an mTOR signaling motif.

Author information

  • 1Institute of Medical Genetics, Wales College of Medicine, Cardiff University, Heath Park, Cardiff, Wales, United Kingdom.

Abstract

Tumors that form as a result of heightened mammalian target of rapamycin (mTOR) signaling are highly vascularized. This process of angiogenesis is regulated through hypoxia-inducible factor (HIF)-mediated transcription of angiogenic factors. It is recognized that inhibition of mTOR with rapamycin can diminish the process of angiogenesis. Our work shows that activation of mTOR by Ras homologue enriched in brain (Rheb) overexpression potently enhances the activity of HIF1alpha and vascular endothelial growth factor (VEGF)-A secretion during hypoxia, which is reversed with rapamycin. Mutants of Rheb, which do not bind guanine nucleotide (D60K, D60V, N119I, and D122N) and are unable to activate mTOR, inhibit the activity of HIF when overexpressed. We show that regulatory associated protein of mTOR (Raptor) interacts with HIF1alpha and requires an mTOR signaling (TOS) motif located in the N terminus of HIF1alpha. Furthermore, a mutant of HIF1alpha lacking this TOS motif dominantly impaired HIF activity during hypoxia and was unable to bind to the co-activator CBP/p300. Rapamycin treatments do not affect the stability of HIF1alpha and modulate HIF activity via a Von Hippel-Lindau (VHL)-independent mechanism. We demonstrate that the high levels of HIF activity in cells devoid of TSC2 can be reversed by treatments with rapamycin or the readdition of TSC2. Our work explains why human cancers with aberrant mTOR signaling are prone to angiogenesis and suggests that inhibition of mTOR with rapamycin might be a suitable therapeutic strategy.

PMID:
17502379
[PubMed - indexed for MEDLINE]
Free full text

Publication Types, MeSH Terms, Substances, Grant Support

Publication Types

MeSH Terms

Substances

Grant Support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk