Send to:

Choose Destination
See comment in PubMed Commons below
Prog Brain Res. 2007;160:9-19.

GABA: homeostatic and pharmacological aspects.

Author information

  • 1Department of Pharmacology and Pharmacotherapy, The Faculty of Pharmaceutical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark.


The central nervous system (CNS) operates by a fine-tuned balance between excitatory and inhibitory signalling. In this context, the inhibitory neurotransmission may be of particular interest as it has been suggested that such neuronal pathways may constitute 'command pathways' and the principle of 'dis-inhibition' leading ultimately to excitation may play a fundamental role (Roberts, E. (1974). Adv. Neurol., 5: 127-143). The neurotransmitter responsible for this signalling is gamma-aminobutyrate (GABA) which was first discovered in the CNS as a curious amino acid (Roberts, E., Frankel, S. (1950). J. Biol. Chem., 187: 55-63) and later proposed as an inhibitory neurotransmitter (Curtis, D.R., Watkins, J.C. (1960). J. Neurochem., 6: 117-141; Krnjevic, K., Schwartz, S. (1967). Exp. Brain Res., 3: 320-336). The present review will describe aspects of GABAergic neurotransmission related to homeostatic mechanisms such as biosynthesis, metabolism, release and inactivation. Additionally, pharmacological and therapeutic aspects of this will be discussed.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk