Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochim Biophys Acta. 2007 Aug;1772(8):958-67. Epub 2007 Mar 31.

Transient receptor potential channels in Alzheimer's disease.

Author information

  • 1Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.

Abstract

Cognitive impairment and emotional disturbances in Alzheimer's disease (AD) result from the degeneration of synapses and neuronal death in the limbic system and associated regions of the cerebral cortex. An alteration in the proteolytic processing of the amyloid precursor protein (APP) results in increased production and accumulation of amyloid beta-peptide (Abeta) in the brain. Abeta can render neurons vulnerable to excitotoxicity and apoptosis by disruption of cellular Ca(2+) homeostasis and neurotoxic factors including reactive oxygen species (ROS), nitric oxide (NO), and cytokines. Many lines of evidence have suggested that transient receptor potential (TRP) channels consisting of six main subfamilies termed the TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin), and TRPA (ankyrin) are involved in Ca(2+) homeostasis disruption. Thus, emerging evidence of the pathophysiological role of TRP channels has yielded promising candidates for molecular entities mediating Ca(2+) homeostasis disruption in AD. In this review, we focus on the TRP channels in AD and highlight some TRP "suspects" for which a role in AD can be anticipated. An understanding of the involvement of TRP channels in AD may lead to the development of new target therapies.

PMID:
17490865
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk