Send to:

Choose Destination
See comment in PubMed Commons below
Laryngoscope. 2007 Jul;117(7):1216-22.

Interaction of cochlear nucleus explants with semiconductor materials.

Author information

  • 1Department of Otorhinolaryngology, Head and Neck Surgery,University of Wuerzburg, Wuerzburg, Germany.



Implantable hearing devices such as cochlear implants and auditory brainstem implants deliver auditory information through electrical stimulation of auditory neurons. The combination of microelectronic electrodes with auditory nerve cells may lead to further improvement of the hearing quality with these devices. Whereas several kinds of neurons are known to grow on semiconductor substrates, interactions of cochlear nucleus (CN) neurons with such materials have yet to be described.


To investigate survival and growth behavior of CN neurons on different semiconductor materials. CN explants from postnatal day 10 Sprague-Dawley rats were cultured for 96 hours in Neurobasal medium on polished and unpolished silicon wafers (p-type Si [100] and p-type Si3N4[100]) as well as plastic surface. These surfaces had been coated with poly-L-lysine and laminin. Neuronal outgrowth was examined using image analysis software after immunohistologic staining for neurofilament. Neurite length and directional changes were quantified. Additionally, neurite morphology and adhesion to the semiconductor material was evaluated by scanning electron microscopy.


Although proper adhesion of CN explants was seen, no neurite growth could be detected on unpolished silicon wafers (Si and Si3N4). Compared with the other test conditions, polished, laminin-coated Si3N4 wafers showed best biocompatibility regarding neurite length and number per explant. CN explants developed a mean of eight neurons with an average length of 236 mum in 96 hours of culture on these wafers.


The results of this study demonstrate the general possibility of CN neuron growth in culture on semiconductors in vitro. The differences in neuron length and number per explant indicate that the growth of CN neurons is influenced by the semiconductor substrate as well as extracellular matrix proteins, with laminin-coated p-type Si3N4[100] being a preferable material for future hybrid experiments on auditory-neuron semiconductor chips.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Write to the Help Desk