Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cell. 2007 May 4;129(3):473-84.

Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+.

Author information

  • 1Departments of Genetics and Biochemistry and the Norris Cotton Cancer Center, Dartmouth Medical School, Rubin 733-HB7937, Lebanon, NH 03756, USA.

Abstract

Although NAD(+) biosynthesis is required for Sir2 functions and replicative lifespan in yeast, alterations in NAD(+) precursors have been reported to accelerate aging but not to extend lifespan. In eukaryotes, nicotinamide riboside is a newly discovered NAD(+) precursor that is converted to nicotinamide mononucleotide by specific nicotinamide riboside kinases, Nrk1 and Nrk2. In this study, we discovered that exogenous nicotinamide riboside promotes Sir2-dependent repression of recombination, improves gene silencing, and extends lifespan without calorie restriction. The mechanism of action of nicotinamide riboside is totally dependent on increased net NAD(+) synthesis through two pathways, the Nrk1 pathway and the Urh1/Pnp1/Meu1 pathway, which is Nrk1 independent. Additionally, the two nicotinamide riboside salvage pathways contribute to NAD(+) metabolism in the absence of nicotinamide-riboside supplementation. Thus, like calorie restriction in the mouse, nicotinamide riboside elevates NAD(+) and increases Sir2 function.

Comment in

PMID:
17482543
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk