Format

Send to:

Choose Destination
See comment in PubMed Commons below
Chem Res Toxicol. 2007 Jun;20(6):887-95. Epub 2007 May 5.

Enantioselective oxidation of trans-4-hydroxy-2-nonenal is aldehyde dehydrogenase isozyme and Mg2+ dependent.

Author information

  • 1Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota, Grand Forks, North Dakota 58202-9024, USA.

Abstract

trans-4-Hydroxy-2-nonenal (HNE) is a cytotoxic alpha,beta-unsaturated aldehyde implicated in the pathology of multiple diseases involving oxidative damage. Oxidation of HNE by aldehyde dehydrogenases (ALDHs) to trans-4-hydroxy-2-nonenoic acid (HNEA) is a major route of metabolism in many organisms. HNE exists as two enantiomers, (R)-HNE and (S)-HNE, and in intact rat brain mitochondria, (R)-HNE is enantioselectively oxidized to HNEA. In this work, we further elucidated the basis of the enantioselective oxidation of HNE by brain mitochondria. Our results showed that (R)-HNE is oxidized enantioselectively by brain mitochondrial lysates with retention of stereoconfiguration of the C4 hydroxyl group. Purified rat ALDH5A enantioselectively oxidized (R)-HNE, whereas rat ALDH2 was not enantioselective. Kinetic data using (R)-HNE, (S)-HNE, and trans-2-nonenal in combination with computer-based modeling of ALDH5A suggest that the selectivity of (R)-HNE oxidation by ALDH5A is the result of the carbonyl carbon of (R)-HNE forming a more favorable B├╝rgi-Duntiz angle with the active site cysteine 293. The presence of Mg2+ ions altered the enantioselectivity of ALDH5A and ALDH2. Mg2+ ions suppressed (R)-HNE oxidation by ALDH5A to a greater extent than that of (S)-HNE. However, Mg2+ ions stimulated the enantioselective oxidation of (R)-HNE by ALDH2 while suppressing (S)-HNE oxidation. These results demonstrate that enantioselective utilization of substrates, including HNE, by ALDHs is dependent upon the ALDH isozyme and the presence of Mg 2+ ions.

PMID:
17480102
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk