Format

Send to

Choose Destination
See comment in PubMed Commons below
Am Nat. 2007 Jun;169(6):E173-91. Epub 2007 Apr 19.

Paradoxes of enrichment: effects of increased light versus nutrient supply on pelagic producer-grazer systems.

Author information

  • 1Department Biologie II, Ludwig-Maximilians-Universitat Munchen, Planegg-Martinsried, Germany. diehl@zi.biologie.uni-muenchen.de

Abstract

Energy-based plant-herbivore models produce the "paradox of enrichment," a destabilizing influence of enrichment on population dynamics. Because many plants change their carbon : nutrient stoichiometry in response to the light : nutrient supply ratio, enrichment with light can cause a mismatch between the elemental compositions of plants and their herbivores. Herbivore growth rates may then decrease with increased light supply, which is termed the "paradox of energy enrichment." I present a stoichiometric phytoplankton-grazer model that accounts for the dynamical vertical light gradient and explore how algal and grazer densities, mineral nutrient concentration, algal nutrient stoichiometry, and system stability respond to enrichment with light (through changes in irradiance, background turbidity, and water column depth) versus enrichment with nutrients. Parameterized for Daphnia, the model produces several "unusual" phenomena: multiple equilibria (with grazers extinct in spite of high algal biomass at one equilibrium), inconsistent light enrichment effects on stability (light enrichment first destabilizes and then stabilizes), and the paradox of energy enrichment. These phenomena are restricted to the low end of realistic nutrient supplies except in very shallow systems, where high sedimentation rates effectively deplete the water column of nutrients. At higher nutrient supplies, light enrichment produces the classical paradox of enrichment, leading first to an increase in grazers at a stable equilibrium and then to algae-grazer oscillations.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for University of Chicago Press
    Loading ...
    Write to the Help Desk