Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Chemosphere. 2007 Sep;69(4):569-74. Epub 2007 Apr 25.

Evaluation of the thermal/optical reflectance method for discrimination between char- and soot-EC.

Author information

  • 1SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China. yongming@ieecas.cn


Many optical, thermal and chemical methods exist for the measurement of elemental carbon (EC) but are unable or neglect to differentiate between the different forms of EC such as char- or soot-EC. The thermal/optical reflectance (TOR) method applies different temperatures for measuring EC and organic carbon (OC) contents through programmed, progressive heating in a controlled atmosphere, making available eight separate carbon fractions - four OC, one pyrolyzed organic carbon, and three EC. These fractions were defined by temperature protocol, oxidation atmosphere, and laser-light reflectance/transmittance. Stepwise thermal evolutional oxidation of the TOR method makes it possible to distinguish char- from soot-EC. In this study, different EC reference materials, including char and soot, were used for testing it. The thermograms of EC reference materials showed that activation energy is lower for char- than soot-EC. Low-temperature EC1 (550 degrees C in a 98% He/2% O2 atmosphere) is more abundant for char samples. Diesel and n-hexane soot samples exhibit similar EC2 (700 degrees C in a 98% He/2% O2 atmosphere) peaks, while carbon black samples peaks at both EC2 and EC3 (800 degrees C in a 98% He/2% O2 atmosphere). These results supported the use of the TOR method to discriminate between char- and soot-EC.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk