Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Protoplasma. 2007;230(3-4):203-15. Epub 2007 Apr 24.

Annexins: putative linkers in dynamic membrane-cytoskeleton interactions in plant cells.

Author information

  • 1Laboratory of Plant Pathogenesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.


The plasma membrane, the most external cellular structure, is at the forefront between the plant cell and its environment. Hence, it is naturally adapted to function in detection of external signals, their transduction throughout the cell, and finally, in cell reactions. Membrane lipids and the cytoskeleton, once regarded as simple and static structures, have recently been recognized as significant players in signal transduction. Proteins involved in signal detection and transduction are organised in specific domains at the plasma membrane. Their aggregation allows to bring together and orient the downstream and upstream members of signalling pathways. The cortical cytoskeleton provides a structural framework for rapid signal transduction from the cell periphery into the nucleus. It leads to intracellular reorganisation and wide-scale modulation of cellular metabolism which results in accumulation of newly synthesised proteins and/or secondary metabolites which, in turn, have to be distributed to the appropriate cell compartments. And again, in plant cells, the secretory vesicles that govern polar cellular transport are delivered to their target membranes by interaction with actin microfilaments. In search for factors that could govern subsequent steps of the cell response delineated above we focused on an evolutionary conserved protein family, the annexins, that bind in a calcium-dependent manner to membrane phospholipids. Annexins were proposed to regulate dynamic changes in membrane architecture and to organise the interface between secretory vesicles and the membrane. Certain proteins from this family were also identified as actin binding, making them ideal mediators in cell membrane and cytoskeleton interactions.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for Springer
    Loading ...
    Write to the Help Desk