Send to

Choose Destination
See comment in PubMed Commons below
J Cell Biol. 2007 Apr 23;177(2):317-28.

Coupling Ca2+ store release to Icrac channel activation in B lymphocytes requires the activity of Lyn and Syk kinases.

Author information

  • 1Department of Physiology, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.


Activation of the B cell receptor complex in B lymphocytes causes Ca(2+) release from intracellular stores, which, in turn, activates ion channels known as Icrac. We investigated the mechanisms that link Ca(2+) store release to channel gating in DT40 B lymphocyte cell lines genetically manipulated to suppress the expression of several tyrosine kinases: Btk, Lyn, Syk, and the Blnk adaptor molecule. The simultaneous but not the independent suppression of Lyn and Syk expression prevents the activation of Icrac without interfering with thapsigargin-sensitive Ca(2+) store release. Icrac activation by Ca(2+) is reversed in mutant cells by the homologous expression of the missing kinases. Pharmacological inhibition of kinase activity by LavendustinA and PP2 cause the same functional deficit as the genetic suppression of enzyme expression. Biochemical assays demonstrate that kinase activity is required as a tonic signal: targets must be phosphorylated to link Ca(2+) store release to Icrac gating. The action of kinases on Icrac activation does not arise from control of the expression level of the stromal interaction molecule 1 and Orai1 proteins.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk