Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Neurotox Res. 2007 Feb;11(2):93-9.

Melatonin decreases the oxidative stress produced by 2,4-dichlorophenoxyacetic acid in rat cerebellar granule cells.

Author information

  • 1Laboratorio de Toxicología Experimental (LATOEX) Facultad de Ciencias Bioquímicas y Farmacéuticas. Universidad Nacional de Rosario, Rosario, Argentina.

Abstract

2,4-Dichlorophenoxyacetic acid (2,4-D) is one of the most widely used herbicides due to its relatively moderate toxicity and to its biodegradability in the soil. In toxic concentrations, 2,4-D displays strong neurotoxicity, partly due to generation of free radicals. Since melatonin has remarkable antioxidant properties, the objective of this study was to assess to what extent it was effective in preventing the 2,4-D effect on redox balance of rat cerebellar granule cells (CGC) in vitro. Cellular viability, generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS), reduced glutathione (GSH) levels, and the activities of the antioxidant enzymes Cu/Zn-superoxide dismutase (Cu/Zn-SOD), Mn-SOD, selenium-glutathione peroxidase (Se-GPx) and catalase (CAT) were measured in CGC exposed to 2,4-D and/or melatonin for 48 h. In CGC cultures exposed to 2,4-D, cell viability, GSH levels and CAT activity decreased significantly whereas ROS generation and Se-GPx activities were augmented. Except for Se-GPx activity, all these changes were counteracted by the concomitant addition of 0.1 or 0.5 mM melatonin. In addition, incubation of CGC with melatonin alone resulted in augmentation of cell viability, GSH levels and Se-GPx activity. RNS generation and SOD activity remained unaffected by either treatment. Since melatonin was able to counteract most of redox changes produced by 2,4-D in CGC in culture, the experimental evidence reported further support the efficacy of melatonin to act as a neuroprotector.

PMID:
17449452
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk