Display Settings:

Format

Send to:

Choose Destination
Biomaterials. 2007 Jul;28(21):3217-27. Epub 2007 Apr 5.

Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering.

Author information

  • 1Department of Bioengineering, Rice University, MS-142, P.O. Box 1892, Houston, TX 77251-1892, USA.

Abstract

We investigated the development of an injectable, biodegradable hydrogel composite of oligo(poly(ethylene glycol) fumarate) (OPF) with encapsulated rabbit marrow mesenchymal stem cells (MSCs) and gelatin microparticles (MPs) loaded with transforming growth factor-beta1 (TGF-beta1) for cartilage tissue engineering applications. Rabbit MSCs and TGF-beta1-loaded MPs were mixed with OPF, a poly(ethylene glycol)-diacrylate crosslinker and the radical initiators ammonium persulfate and N,N,N',N'-tetramethylethylenediamine, and then crosslinked at 37 degrees C for 8 min to form hydrogel composites. Three studies were conducted over 14 days in order to examine the effects of: (1) the composite formulation, (2) the MSC seeding density, and (3) the TGF-beta1 concentration on the chondrogenic differentiation of encapsulated rabbit MSCs. Bioassay results showed no significant difference in DNA amount between groups, however, groups with MPs had a significant increase in glycosaminoglycan content per DNA starting at day 7 as compared to controls at day 0. Chondrocyte-specific gene expression of type II collagen and aggrecan were only evident in groups containing TGF-beta1-loaded MPs and varied with TGF-beta1 concentration in a dose-dependent manner. Specifically, type II collagen gene expression exhibited a 161+/-49-fold increase and aggrecan gene expression a 221+/-151-fold increase after 14 days with the highest dose of TGF-beta1 (16 ng/ml). These results indicate that encapsulated rabbit MSCs remained viable over the culture period and differentiated into chondrocyte-like cells, thus suggesting the potential of OPF composite hydrogels as part of a novel strategy for localized delivery of stem cells and bioactive molecules.

PMID:
17445882
[PubMed - indexed for MEDLINE]
PMCID:
PMC2964378
Free PMC Article

Images from this publication.See all images (7)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk