Send to:

Choose Destination
See comment in PubMed Commons below
Cancer Res. 2007 Apr 15;67(8):3560-4.

Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors.

Author information

  • 1Department of Molecular and Cellular Biology Research, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, Canada.


Vascular endothelial cells have been identified as a critical component of the neural stem cell niche, raising the possibility that brain tumor stem-like cells (TSLC) may also rely on signaling interactions with nearby tumor vasculature to maintain their stem-like state. The disruption of such a TSLC vascular niche by an antiangiogenic therapy could result in loss of stemness characteristics associated with intrinsic drug resistance and, thus, preferentially sensitize TSLC to the effects of chemotherapy. Considering these possibilities, we investigated the impact of antiangiogenic anticancer therapy on the TSLC fraction of glioma tumors. Athymic nude mice bearing s.c. tumor xenografts of the C6 rat glioma cell line were treated with either a targeted antiangiogenic agent, antiangiogenic schedules of low-dose metronomic chemotherapy, combination therapies of antiangiogenic agents and chemotherapy, or, for the purpose of comparison, a conventional cytotoxic schedule of maximum tolerated dose chemotherapy using cyclophosphamide. Targeted antiangiogenic therapy or cytotoxic chemotherapy did not reduce the fraction of tumor sphere-forming units (SFU) in the tumor, whereas all treatment groups that combined both antiangiogenic and cytotoxic drug effects caused a significant reduction in SFU. This work highlights the possibility that selective eradication of TSLC may be achieved by targeting the tumor microenvironment (and potentially a supportive TSLC niche) rather than the TSLC directly. Furthermore, this work suggests a possible novel effect of antiangiogenic therapy, namely, as a chemosensitizer of TSLC, and thus represents a possible new mechanism to explain the ability of antiangiogenic therapy to enhance the efficacy of chemotherapy.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk