Format

Send to

Choose Destination
See comment in PubMed Commons below
J Nutr Biochem. 2007 Nov;18(11):736-45. Epub 2007 Apr 16.

Physiological concentrations of butyrate favorably modulate genes of oxidative and metabolic stress in primary human colon cells.

Author information

  • 1Department of Nutritional Toxicology, Institute for Nutrition, Friedrich-Schiller-University, Biologisch-Pharmazeutische Fakult├Ąt, D-07743 Jena, Germany.

Abstract

Butyrate, a metabolite of gut flora-mediated fermentation of dietary fibre, was analysed for effects on expression of genes related to oxidative stress in primary human colon cells. An induction of detoxifying, antioxidative genes is expected to contribute to dietary chemoprevention. Cells were treated with butyrate (3.125-50 mM; 0.5-8 h), and kinetics of uptake and survival were measured. Gene expression was determined with a pathway-specific cDNA array after treating colon epithelium stripes with nontoxic doses of butyrate (10 mM, 12 h). Changes of hCOX-2, hSOD2 and hCAT expression were confirmed with real-time polymerase chain reaction (PCR) and by measuring catalase-enzyme activity. Primary colon cells consumed 1.5 and 0.5 mM butyrate after 4- and 12-h treatment, respectively. Cell viability was not changed by butyrate during 0.5-2-h treatment, whereas cell yields decreased after 1 h. Metabolic activity of remaining cells was either increased (4 h, 50 mM) or retained at 97% (8 h, 50 mM). Expression of hCAT was enhanced, whereas hCOX-2 and hSOD2 were lowered according to both array and real-time PCR analysis. An enhanced catalase-enzyme activity was detected after 2 h butyrate treatment. Healthy nontransformed colon cells well tolerated butyrate (50 mM, 2 h), and lower concentrations (10 mM, 12 h) modulated cyclooxygenase 2 (COX-2) and catalase genes. This points to a dual role of chemoprotection, since less COX-2 could reduce inflammatory processes, whereas more catalase improves detoxification of hydrogen peroxide (H(2)O(2)), a compound of oxidative stress. Changes of this type could reduce damaging effects by oxidants and protect cells from initiation.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk