Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Cell. 2007 Apr 13;26(1):145-55.

A network of multiple regulatory layers shapes gene expression in fission yeast.

Author information

  • 1Cancer Research UK Fission Yeast Functional Genomics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.

Abstract

Gene expression is controlled at multiple layers, and cells may integrate different regulatory steps for coherent production of proper protein levels. We applied various microarray-based approaches to determine key gene-expression intermediates in exponentially growing fission yeast, providing genome-wide data for translational profiles, mRNA steady-state levels, polyadenylation profiles, start-codon sequence context, mRNA half-lives, and RNA polymerase II occupancy. We uncovered widespread and unexpected relationships between distinct aspects of gene expression. Translation and polyadenylation are aligned on a global scale with both the lengths and levels of mRNAs: efficiently translated mRNAs have longer poly(A) tails and are shorter, more stable, and more efficiently transcribed on average. Transcription and translation may be independently but congruently optimized to streamline protein production. These rich data sets, all acquired under a standardized condition, reveal a substantial coordination between regulatory layers and provide a basis for a systems-level understanding of multilayered gene-expression programs.

PMID:
17434133
[PubMed - indexed for MEDLINE]
PMCID:
PMC1885965
Free PMC Article

Images from this publication.See all images (7)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk