Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Genome Biol. 2007;8(4):R56.

Global transcriptome analysis of murine embryonic stem cell-derived cardiomyocytes.

Author information

  • 1Center of Physiology and Pathophysiology, Institute of Neurophysiology, University of Cologne, Cologne, Germany. m-x.doss@uni-koeln.de



Characterization of gene expression signatures for cardiomyocytes derived from embryonic stem cells will help to define their early biologic processes.


A transgenic alpha-myosin heavy chain (MHC) embryonic stem cell lineage was generated, exhibiting puromycin resistance and expressing enhanced green fluorescent protein (EGFP) under the control of the alpha-MHC promoter. A puromycin-resistant, EGFP-positive, alpha-MHC-positive cardiomyocyte population was isolated with over 92% purity. RNA was isolated after electrophysiological characterization of the cardiomyocytes. Comprehensive transcriptome analysis of alpha-MHC-positive cardiomyocytes in comparison with undifferentiated alpha-MHC embryonic stem cells and the control population from 15-day-old embryoid bodies led to identification of 884 upregulated probe sets and 951 downregulated probe sets in alpha-MHC-positive cardiomyocytes. A subset of upregulated genes encodes cytoskeletal and voltage-dependent channel proteins, and proteins that participate in aerobic energy metabolism. Interestingly, mitosis, apoptosis, and Wnt signaling-associated genes were downregulated in the cardiomyocytes. In contrast, annotations for genes upregulated in the alpha-MHC-positive cardiomyocytes are enriched for the following Gene Ontology (GO) categories: enzyme-linked receptor protein signaling pathway (GO:0007167), protein kinase activity (GO:0004672), negative regulation of Wnt receptor signaling pathway (GO:0030178), and regulation of cell size (O:0008361). They were also enriched for the Biocarta p38 mitogen-activated protein kinase signaling pathway and Kyoto Encyclopedia of Genes and Genomes (KEGG) calcium signaling pathway.


The specific pattern of gene expression in the cardiomyocytes derived from embryonic stem cells reflects the biologic, physiologic, and functional processes that take place in mature cardiomyocytes. Identification of cardiomyocyte-specific gene expression patterns and signaling pathways will contribute toward elucidating their roles in intact cardiac function.

[PubMed - indexed for MEDLINE]
Free PMC Article

Images from this publication.See all images (6)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk