Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Phylogenet Evol. 2007 Jul;44(1):436-49. Epub 2007 Mar 2.

DNA-based taxonomy for associating adults and larvae in multi-species assemblages of chafers (Coleoptera: Scarabaeidae).

Author information

  • 1Zoologische Staatssammlung M√ľnchen, Munich, Germany. ahrens.dirk_col@gmx.de <ahrens.dirk_col@gmx.de>

Abstract

DNA sequences provide a universal character system in taxonomy for associating all developmental stages of organisms, but ambiguity arises due to genetic variation within species. The problem is compounded where target groups are less well studied or incompletely represented in DNA databases. Here we investigate the utility of DNA for larval-adult species associations within chafer (Coleoptera: Scarabaeidae) communities from four sites in the tropical lowlands of Nepal. We sequenced ca. 1600 bp of mitochondrial cox1 and rrnL and 700 bp of nuclear 28S rRNA from 250 larval and adult specimens. Individuals were grouped into putative species using statistical parsimony analysis and population aggregation analysis (PAA), whereby specimens from each locality were grouped according to the presence of diagnostic nucleotides. In addition, species membership was determined based on shifts in branching rates on clock-constrained trees to detect the putative transition from speciation to population coalescence patterns. Using these two methods we delineated between 48 and 56 groups, of which 16-20 were composed of larval and adult individuals. Nuclear and mtDNA-based groups were highly congruent; variation of 28S rRNA within groups was very low, while one widespread 28S rRNA genotype was universally found in a paraphyletic group of five mtDNA clusters. Linnean names could be assigned to 19 groups, and hence between 86.1% and 92.7% of larval specimens could be associated to species by their membership in clearly delineated groups that contained fully identified adults. The remaining larvae were delineated as five species, four of which could be assigned to Anomala or Adoretus based on their phylogenetic position. We conclude that the sequence variation was highly structured in this complex assemblage of chafers and that any given individual (larva or adult) can be readily associated with a particular DNA group using the criterion of diagnos ability. The association of different developmental stages therefore becomes a matter of determining the extent of the DNA-based groups, rather than matching of sequences from adult and larval individuals. This indicates the need for a purely sequence-based taxonomic system when associating different life stages via DNA.

[PubMed - indexed for MEDLINE]

Publication Types, MeSH Terms, Substances, Secondary Source ID

Publication Types

MeSH Terms

Substances

Secondary Source ID

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk