Format

Send to:

Choose Destination
See comment in PubMed Commons below
Chem Mater. 2005 Aug 9;17(16):4256-4261.

Sulfide-Arrested Growth of Gold Nanorods.

Author information

  • 1Department of Chemistry and the Birck Nanotechnology Center, Purdue UniVersity, 560 Oval Drive, West Lafayette, Indiana 47907-2084.

Abstract

The growth of gold nanorods can be arrested at intermediate stages by treatment with Na(2)S, providing greater control over their optical resonances. Nanorods prepared by the seeded reduction of AuCl(4) in aqueous cetyltrimethylammonium bromide solutions in the presence of AgNO(3) typically exhibit a gradual blueshift in longitudinal plasmon resonance, over a period of hours to days. This "optical drift" can be greatly reduced by adding millimolar concentrations of Na(2)S to quench nanorod growth, with an optimized sulfur:metal ratio of 4:1. The sulfide-treated nanorods also experience a marked redshift as a function of Na(2)S concentration to produce stable plasmon resonances well into the near-infrared. Sulfide treatment permitted a time-resolved analysis of nanorod growth by transmission electron microscopy, revealing two distinct periods: an initial growth burst (t < 15 min) that generates dumbbell-shaped nanorods with flared ends and a slower phase (t > 30 min) favoring growth around the midsection, leading to nanorods with the more familiar oblate geometry. The blueshift in plasmon resonance that accompanies the dumbbell-to-oblate shape transition correlates more strongly with changes in the length-to-midsection (L/D(1)) ratio rather than the length-to-end width (L/D(2)) ratio, based on the empirical relationship introduced by El-Sayed and co-workers.

PMID:
17415410
[PubMed]
PMCID:
PMC1847745
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Write to the Help Desk