Display Settings:

Format

Send to:

Choose Destination
Crit Care Med. 2007 May;35(5):1383-9.

Calculation of intratracheal airway pressure in ventilated neonatal piglets with endotracheal tube leaks.

Author information

  • 1Department of Pediatrics, Univesity of Kiel, Germany. nikischin@pediatrics.uni-kiel.de

Abstract

OBJECTIVE:

In ventilated neonates, only the applied pressure of the ventilator is adjusted and monitored. When an endotracheal tube leaks, intratracheal pressure decreases depending on the size of the endotracheal tube and of the leak. Furthermore, an increase in resistance and/or compliance might delay the increase of intratracheal pressure during inspiration and its decline during expiration. Short inspiratory time can cause insufficient ventilation, because intratracheal pressure peak might not be reached. Short expiratory time may lead to air trapping, because intratracheal pressure could not return to baseline. The aim of this study was to develop a mathematical algorithm to calculate intratracheal pressure continuously during ventilation and to evaluate the accuracy of this method.

DESIGN:

Prospective, animal study.

SETTING:

University research laboratory.

SUBJECTS:

To verify the mathematical algorithm, eight neonatal piglets (1600-2600 g) were studied under different endotracheal tube leak conditions (45% to 98%). The median compliance and resistance were 1.06 mL/cm H2O/kg and 123 cm H2O/L/sec, respectively.

INTERVENTIONS:

Pressure decreases caused by the different endotracheal tubes were measured in a model while air flow was increased stepwise. Based on these results, a mathematical method was developed to calculate intratracheal pressure under leak conditions continuously in relation to the flow through the endotracheal tube as well as to calculate the values of resistance, compliance, and applied pressure of the ventilator.

MEASUREMENTS AND MAIN RESULTS:

The intratracheal pressure calculated was compared with the measured intratracheal pressure over time. The differences between measured and calculated intratracheal pressure related to peak applied pressure of the ventilator did not exceed 10%. The medians of absolute amounts of differences between measured and calculated intratracheal pressure were <1 cm H2O.

CONCLUSIONS:

The accuracy of the calculation of intratracheal pressure ensures adequate monitoring of artificial ventilation, even in the presence of endotracheal tube leaks. This might decrease the risk of barotrauma and improve the effectiveness of ventilation.

PMID:
17414085
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Lippincott Williams & Wilkins
    Loading ...
    Write to the Help Desk