Send to

Choose Destination
See comment in PubMed Commons below
Pediatr Res. 2007 May;61(5 Pt 2):64R-67R.

Developmental origins of beta-cell failure in type 2 diabetes: the role of epigenetic mechanisms.

Author information

  • 1Department of Pediatrics Children's Hospital Philadelphia, University of Pennsylvania, PA 19104, USA.


Intrauterine growth retardation (IUGR) has been linked to later development of type 2 diabetes in adulthood. An abnormal metabolic intrauterine milieu affects the development of the fetus by permanently modifying gene expression of susceptible cells. Altered gene expression persists after birth, suggesting that an epigenetic mechanism may be responsible for changes in transcription. Uteroplacental insufficiency (IUGR) is associated with hypomethylation and hyperacetylation of genomic DNA in brain and liver of IUGR fetal and juvenile rats. These findings are associated with zinc deficiency that often accompanies fetal growth retardation. Studies in the IUGR rat also demonstrate that an abnormal intrauterine environment induces epigenetic modifications of key genes regulating beta-cell development and experiments directly link chromatin remodeling to suppression of transcription. Dietary protein restriction of pregnant rats causes fetal growth retardation and is associated with hypomethylation of the glucocorticoid receptor (GR) and PPARgamma genes in liver of the offspring. It is postulated that these epigenetic changes result in the observed increase in gene expression of GR and PPARgamma. Future research will be directed at elucidating the mechanisms underlying epigenetic modifications in offspring.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk