Send to:

Choose Destination
See comment in PubMed Commons below
Neuroscience. 2007 May 25;146(3):922-30. Epub 2007 Apr 6.

Differential activation of anterior and midline thalamic nuclei following retrieval of aversively motivated learning tasks.

Author information

  • 1Department of Behavioral Physiology, Graduate School of Human Sciences, Osaka University, 1-2 Yamada-oka, Suita 565-0871, Japan.


Two thalamic nuclear groups, the anterior thalamic nuclei (ATN) and midline and intralaminar thalamic complex (MITC) have connections to the prefrontal cortex, amygdala, hippocampus and accumbens that are important for learning and memory. However, the anatomical proximity between the ATN and MITC makes it difficult to reveal their roles in memory retrieval of aversive conditioned behavior. To address the issue, we explored the activation of the ATN and MITC, as represented by the expression of the immediate early gene c-fos, following either the retrieval of a conditioned taste aversion (CTA) induced by taste-LiCl pairing (visceral aversion) or of inhibitory avoidance (IA) induced by context-foot shock pairing (somatic aversion) in rats. The anterodorsal (AD) nucleus in the ATN was activated by foot shock and the recall of IA, but not by i.p. injection of LiCl or the recall of CTA. No significant elevation was observed in the other ATN following these treatments. Among nuclei of the MITC, the paraventricular thalamic nucleus (PVT) was activated by the delivery of shock or LiCl and by the recall of both CTA and IA, while the mediodorsal thalamus (MD) and central medial and intermediate thalamus (CM/IMD) were not. The innately aversive taste of quinine did not elevate c-fos expression in either the ATN or MITC. These results suggest that the PVT in the MITC is involved in the processing and retrieval of both taste-malaise and context-shock association tasks, while the AD in the ATN is involved in those of context-shock association only. The difference of the activity between the ATN and MITC demonstrates their functional and anatomical heterogeneity in neural substrates for aversive learning tasks.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk