Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochim Biophys Acta. 2007 May;1772(5):563-9. Epub 2007 Feb 24.

Evidence that the inhibitory effects of guanidinoacetate on the activities of the respiratory chain, Na+,K+-ATPase and creatine kinase can be differentially prevented by taurine and vitamins E and C administration in rat striatum in vivo.

Author information

  • 1Departamento de BioquĂ­mica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil.

Abstract

Guanidinoacetate methyltransferase (GAMT) deficiency is an inherited neurometabolic disorder biochemically characterized by tissue accumulation of guanidinoacetate (GAA) and depletion of creatine. Affected patients present epilepsy and mental retardation whose etiopathogeny is unclear. In a previous study we showed that instrastriatal administration of GAA caused a reduction of Na(+),K(+)-ATPase and creatine kinase (CK) activities, as well as an increase in TBARS (an index of lipid peroxidation). In the present study we investigated the in vitro and in vivo effects of GAA on glucose uptake from [U-(14)C] acetate (citric acid cycle activity) and on the activities of complexes II, II-III, III and IV of the respiratory chain in striatum of rats. Results showed that 50 and 100 microM GAA (in vitro studies) and GAA administration (in vivo studies) significantly inhibited complexes II and II-III, respectively, but did not alter complexes III and IV, as well as CO(2) production. We also studied the influence of taurine or vitamins E and C on the inhibitory effects caused by intrastriatal administration of GAA on complexes II and II-III, Na(+),K(+)-ATPase and CK activities, and on TBARS in rat striatum. Pre-treatment with taurine and vitamins E and C revealed that taurine prevents the effects of intrastriatal administration of GAA on the inhibition of complex II, complex II-III, and Na(+),K(+)-ATPase activities. Vitamins E and C prevent the effects of intrastriatal administration of GAA on the inhibition of CK and Na(+),K(+)-ATPase activities, and on the increase of TBARS. The data suggest that GAA in vivo and in vitro treatment disturbs important parameters of striatum energy metabolism and that oxidative damage may be mediating these effects. It is presumed that defects in striatum bioenergetics might be involved in the pathophysiology of striatum damage characteristic of patients with GAMT-deficiency.

PMID:
17407807
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk