Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Gerontol A Biol Sci Med Sci. 2007 Mar;62(3):281-5.

Methodology, design, and analytic techniques to address measurement of comorbid disease.

Author information

  • 1Geriatrics Section, Boston University School of Medicine, Boston, MA 02118, USA. tlash@bu.edu

Abstract

BACKGROUND:

Measurement of comorbidity affects all variable axes that are considered in health care research: confounding, modifying, independent, and dependent variable. Comorbidity measurement particularly affects research involving older adults because they bear the disproportionate share of the comorbidity burden.

METHODS:

We examine how well researchers can expect to segregate study participants into those who are healthier and those who are less healthy, given the variable axis for which they are measuring comorbidity, the comorbidity measure they select, and the analytic method they choose. We also examine the impact of poor measurement of comorbidity.

RESULTS:

Available comorbidity measures make use of medical records, self-report, physician assessments, and administrative databases. Analyses using these scales introduce uncertainties that can be framed as measurement error or misclassification problems, and can be addressed by extant analytic methods. Newer analytic methods make efficient use of multiple sources of comorbidity information.

CONCLUSIONS:

Consideration of the comorbidity measure, its role in the analysis, and analogous measurement error problems will yield an analytic solution and an appreciation for the likely direction and magnitude of the biases introduced.

PMID:
17389725
[PubMed - indexed for MEDLINE]
PMCID:
PMC2645650
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk