Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Cell. 2007 Mar 23;25(6):889-901.

A conserved docking site modulates substrate affinity for calcineurin, signaling output, and in vivo function.

Author information

  • 1Department of Biological Sciences, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA.

Abstract

Calcineurin, the conserved Ca(2+)/calmodulin-regulated protein phosphatase, mediates diverse aspects of Ca(2+)-dependent signaling. We show that substrates bind calcineurin with varying strengths and examine the impact of this affinity on signaling. We altered the calcineurin-docking site, or PxIxIT motif, in Crz1, the calcineurin-regulated transcription factor in S. cerevisiae, to decrease (Crz1(PVIAVN)) or increase (Crz1(PVIVIT)) its affinity for calcineurin. As a result, the Ca(2+)-dependent dephosphorylation and activation of Crz1(PVIAVN) are decreased, whereas Crz1(PVIVIT) is constitutively dephosphorylated and hyperactive. Surprisingly, the physiological consequences of altering calcineurin-Crz1 affinity depend on the growth conditions. Crz1(PVIVIT) improves yeast growth under several environmental stress conditions but causes a growth defect during alkaline stress, most likely by titrating calcineurin away from other substrates or regulators. Thus, calcineurin-substrate affinity determines the Ca(2+) concentration dependence and output of signaling in vivo as well as the balance between different branches of calcineurin signaling in an overall biological response.

PMID:
17386265
[PubMed - indexed for MEDLINE]
PMCID:
PMC2913616
Free PMC Article

Images from this publication.See all images (6)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk