Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Bacteriol. 2007 Jun;189(11):3987-95. Epub 2007 Mar 23.

Biochemical characterization and physiological properties of Escherichia coli UDP-N-acetylmuramate:L-alanyl-gamma-D-glutamyl-meso-diaminopimelate ligase.

Author information

  • 1CNRS Laboratoire des Enveloppes Bactériennes et Antibiotiques, Institut de Biochimie et Biophysique Moléculaire et Cellulaire, UMR 8619, 91405 Orsay Cedex, France. mireille.herve@u-psud.fr

Abstract

The UDP-N-acetylmuramate:L-alanyl-gamma-D-glutamyl-meso-diaminopimelate ligase (murein peptide ligase [Mpl]) is known to be a recycling enzyme allowing reincorporation into peptidoglycan (murein) of the tripeptide L-alanyl-gamma-D-glutamyl-meso-diaminopimelate released during the maturation and constant remodeling of this bacterial cell wall polymer that occur during cell growth and division. Mpl adds this peptide to UDP-N-acetylmuramic acid, thereby providing an economical additional source of UDP-MurNAc-tripeptide available for de novo peptidoglycan biosynthesis. The Mpl enzyme from Escherichia coli was purified to homogeneity as a His-tagged form, and its kinetic properties and parameters were determined. Mpl was found to accept tri-, tetra-, and pentapeptides as substrates in vitro with similar efficiencies, but it accepted the dipeptide L-Ala-D-Glu and L-Ala very poorly. Replacement of meso-diaminopimelic acid by L-Lys resulted in a significant decrease in the catalytic efficacy. The effects of disruption of the E. coli mpl gene and/or the ldcA gene encoding the LD-carboxypeptidase on peptidoglycan metabolism were investigated. The differences in the pools of UDP-MurNAc peptides and of free peptides between the wild-type and mutant strains demonstrated that the recycling activity of Mpl is not restricted to the tripeptide and that tetra- and pentapeptides are also directly reused by this process in vivo. The relatively broad substrate specificity of the Mpl ligase indicates that it is an interesting potential target for antibacterial compounds.

PMID:
17384195
[PubMed - indexed for MEDLINE]
PMCID:
PMC1913392
Free PMC Article

Images from this publication.See all images (4)Free text

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk