Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Bacteriol. 2007 Jun;189(11):4046-52. Epub 2007 Mar 23.

Iron-dependent RNA-binding activity of Mycobacterium tuberculosis aconitase.

Author information

  • 1Centre for DNA Fingerprinting and Diagnostics, Hyderabad, 500076, India.

Abstract

Cellular iron levels are closely monitored by iron regulatory and sensor proteins of Mycobacterium tuberculosis for survival inside macrophages. One such class of proteins systematically studied in eukaryotes and reported in a few prokaryotes are the iron-responsive proteins (IRPs). These IRPs bind to iron-responsive elements (IREs) present at untranslated regions (UTRs) of mRNAs and are responsible for posttranscriptional regulation of the expression of proteins involved in iron homeostasis. Amino acid sequence analysis of M. tuberculosis aconitase (Acn), a tricarboxylic acid (TCA) cycle enzyme, showed the presence of the conserved residues of the IRP class of proteins. We demonstrate that M. tuberculosis Acn is bifunctional. It is a monomeric protein that is enzymatically active in converting isocitrate to cis-aconitate at a broad pH range of 7 to 10 (optimum, pH 8). As evident from gel retardation assays, M. tuberculosis Acn also behaves like an IRP by binding to known mammalian IRE-like sequences and to predicted IRE-like sequences present at the 3' UTR of thioredoxin (trxC) and the 5' UTR of the iron-dependent repressor and activator (ideR) of M. tuberculosis. M. tuberculosis Acn when reactivated with Fe(2+) functions as a TCA cycle enzyme, but upon iron depletion by a specific iron chelator, it behaves like an IRP, binding to the selected IREs in vitro. Since iron is required for the Acn activity and inhibits the RNA-binding activity of Acn, the two activities of M. tuberculosis Acn are mutually exclusive. Our results demonstrate the bifunctional nature of M. tuberculosis Acn, pointing to its likely role in iron homeostasis.

PMID:
17384188
[PubMed - indexed for MEDLINE]
PMCID:
PMC1913386
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk