Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Neurosci Lett. 2007 Apr 18;416(3):221-6. Epub 2007 Jan 25.

Carbenoxolone modifies spontaneous inhibitory and excitatory synaptic transmission in rat somatosensory cortex.

Author information

  • 1Department of Physiology and The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA. lie.yang@downstate.edu


Gap junction (GJ) coupling between neocortical GABAergic interneurons plays a critical role in the synchronization of activity in cortical networks in physiological and pathophysiological states, e.g., seizures. Past studies have shown that GJ blockers exert anticonvulsant actions in both in vivo and in vitro models of epilepsy. However, the precise mechanisms underlying these antiepileptic effects have not been fully elucidated. This is due, in part, to a lack of information of the influence of GJ blockade on network activity in the absence of convulsant agents or enhanced neuronal excitation. One key question is whether GJ blockers act on excitatory or inhibitory systems, or both. To address this issue, we examined the effects of the GJ blocker carbenoxolone (CarbX, 150 microM) on spontaneous inhibitory postsynaptic currents (sIPSCs) and excitatory postsynaptic currents (sEPSCs) in acute slices of rat somatosensory cortex. Results showed that CarbX decreased the amplitude and frequency of sIPSCs by 30.2% and 25.7%, respectively. CarbX increased the mean frequency of sEPSCs by 24.1%, but had no effect on sEPSC amplitude. During blockade of GABAA-mediated events with picrotoxin (20 microM), CarbX induced only a small increase in sEPSC frequency that was not statistically different from control, indicating CarbX enhancement of sEPECs was secondary to the depression of synaptic inhibition. These findings suggest that in neocortex, blockade of GJs leads to an increase in spontaneous excitation by uncoupling GABAergic interneurons, and that electronic communication between inhibitory cells plays a significant role in regulating tonic synaptic excitation.

[PubMed - indexed for MEDLINE]
Free PMC Article

Images from this publication.See all images (3)Free text

Fig. 1
Fig. 2
Fig. 3
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk