Send to:

Choose Destination
See comment in PubMed Commons below
J Chem Phys. 2007 Mar 21;126(11):114107.

Quasirelativistic theory. II. Theory at matrix level.

Author information

  • 1Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, Peking University, Beijing 100871, People's Republic of China.


The Dirac operator in a matrix representation in a kinetically balanced basis is transformed to the matrix representation of a quasirelativistic Hamiltonian that has the same electronic eigenstates as the original Dirac matrix (but no positronic eigenstates). This transformation involves a matrix X, for which an exact identity is derived and which can be constructed either in a noniterative way or by various iteration schemes, not requiring an expansion parameter. Both linearly convergent and quadratically convergent iteration schemes are discussed and compared numerically. The authors present three rather different schemes, for each of which even in unfavorable cases convergence is reached within three or four iterations, for all electronic eigenstates of the Dirac operator. The authors present the theory both in terms of a non-Hermitian and a Hermitian quasirelativistic Hamiltonian. Quasirelativistic approaches at the matrix level known from the literature are critically analyzed in the frame of the general theory.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Institute of Physics
    Loading ...
    Write to the Help Desk