Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2007 Mar 27;104(13):5425-30. Epub 2007 Mar 16.

Microtubule function in fibroblast spreading is modulated according to the tension state of cell-matrix interactions.

Author information

  • 1Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA.

Abstract

Mechanical and physical features of the extracellular environment dramatically impact cell shape. Fibroblasts interacting with 3D relaxed collagen matrices appear much different from cells on 2D collagen-coated surfaces and form dendritic cell extensions that contain microtubule cores and actin-rich tips. We found that interfering with cellular microtubules caused cells in relaxed matrices to remain round and unable to form dendritic extensions, whereas fibroblasts on coverslips formed lamellipodial extensions and were spread completely without microtubules but were unable to become polarized. Fibroblasts in relaxed collagen matrices lack stress fibers, focal adhesions, and focal adhesion signaling. Fibroblasts on collagen-coated coverslips that were unable to develop stress fibers and focal adhesions, because of either adding blebbistatin to the cells or use of soft coverslips, also formed microtubule-dependent dendritic extensions. Conversely, fibroblasts interacting with precontracted collagen matrices developed stress fibers and lamellipodial extensions and required microtubules for polarization but not spreading. Our findings demonstrate an unexpected relationship between the role of microtubules in cell spreading and the tension state of cell-matrix interactions. At a low tension state (absence of stress fibers and focal adhesions) typical of fibroblasts in relaxed collagen matrices, cells spread with dendritic extensions whose formation requires microtubules; at a high tension state (stress fibers and focal adhesions) typical of cells on coverslips, cells spread with lamellipodial extensions and microtubules are required for cell polarization but not for spreading.

PMID:
17369366
[PubMed - indexed for MEDLINE]
PMCID:
PMC1838480
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk